Planes in \mathbb{R}^3
We described a line as the set of position vectors expressible as $r_0 + v$, where r_0 was a position vector of a point in L and v was any vector parallel to L.

We can describe a plane the same way: the set of position vectors expressible as the sum of a position vector to a point in P and an arbitrary vector parallel to P.

Choose a vector n which is orthogonal to the plane and choose an arbitrary point P_0 in the plane.

How can we use this data to describe all the other points P which lie in the plane?
Let r_0 and r be the position vectors of P_0 and P respectively. The normal vector n is orthogonal to every vector in the plane. In particular n is orthogonal to $r - r_0$ and so we have
\[n \cdot (r - r_0) = 0. \]

This equation
\[n \cdot (r - r_0) = 0. \quad (1) \]
can be rewritten as
\[n \cdot r = n \cdot r_0. \quad (2) \]
Either of the equations (1) or (2) is called a vector equation of the plane.
Example 1
Find a vector equation for the plane passing through \(P_0 = (0, -2, 3) \) and normal to the vector \(n = 4i + 2j - 3k \).

We have \(r_0 = (0, -2, 3) \) and \(n = (4, 2, -3) \). Thus the vector form is
\[
n \cdot (r - r_0) = 0,
\]
or
\[
(4i + 2j - 3k) \cdot [(x - 0)i + (y + 2)j + (z - 3)k] = 0.
\]
Expanding this gives us a scalar equation for the plane...

Given \(n = \langle A, B, C \rangle \), \(r = \langle x, y, z \rangle \) and \(r_0 = \langle x_0, y_0, z_0 \rangle \), the vector equation \(n \cdot (r - r_0) = 0 \) becomes
\[
\langle A, B, C \rangle \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0,
\]
or
\[
A(x - x_0) + B(y - y_0) + C(z - z_0) = 0. \tag{3}
\]
Equation (3) is the scalar equation of the plane through \(P_0(x_0, y_0, z_0) \) with normal vector \(n = \langle A, B, C \rangle \).

The equation
\[
A(x - x_0) + B(y - y_0) + C(z - z_0) = 0.
\]
can be written more simply in standard form
\[
Ax + By + Cz + D = 0,
\]
where \(D = -(Ax_0 + By_0 + Cz_0) \).

If \(D = 0 \), the plane passes through the origin.
Example 2
Find a scalar equation for the plane passing through $P_0 = (0, -2, 3)$ and normal to the vector $n = 4i + 2j - 3k$.

The vector form is

$$(4i + 2j - 3k) \cdot [(x - 0)i + (y + 2)j + (z - 3)k] = 0,$$

which in scalar form becomes

$$4(x - 0) + 2(y + 2) - 3(z - 3) = 0,$$

and this is equivalent to

$$4x + 2y - 3z = -13.$$
The first step in this example was finding the normal vector \mathbf{n}, but in fact, there’s another way to do this.

Recall that in \mathbb{R}^3 only, there is a product of two vectors called a cross product. The cross product of \mathbf{a} and \mathbf{b} is a vector denoted $\mathbf{a} \times \mathbf{b}$ which is orthogonal to both \mathbf{a} and \mathbf{b}. If we have two nonzero vectors \mathbf{a} and \mathbf{b} parallel to our plane, then $\mathbf{n} = \mathbf{a} \times \mathbf{b}$ is a normal vector.

Example 4

Consider the two planes

$$x - y + z = -1 \quad \text{and} \quad 2x + y + 3z = 4.$$

Explain why the planes above are not parallel and find a direction vector for the line of intersection.

Two planes are parallel if and only if their normal vectors are parallel. Normal vectors for the two planes above are for example

$$\mathbf{n}_1 = \mathbf{i} - \mathbf{j} + \mathbf{k} \quad \text{and} \quad \mathbf{n}_2 = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$$

respectively. These vectors are not parallel, so the planes can’t be parallel and must intersect. A vector \mathbf{v} parallel to the line of intersection is a vector which is orthogonal to both the normal vectors above. We can find such a vector by calculating the cross product of the normal vectors:

$$\mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & 1 \\ 2 & 1 & 3 \end{vmatrix} = -4\mathbf{i} - \mathbf{j} + 3\mathbf{k}.$$

Example 5

Find the line through the origin and parallel to the line of intersection of the two planes

$$x + 2y - z = 2 \quad \text{and} \quad 2x - y + 4z = 5.$$

The planes have respective normals

$$\mathbf{n}_1 = \mathbf{i} + 2\mathbf{j} - \mathbf{k} \quad \text{and} \quad \mathbf{n}_2 = 2\mathbf{i} - \mathbf{j} + 4\mathbf{k}.$$

A direction vector for their line of intersection is given by

$$\mathbf{v} = \mathbf{n}_1 \times \mathbf{n}_2 = 7\mathbf{i} - 6\mathbf{j} - 5\mathbf{k}.$$

A vector parametric equation of the line is

$$\mathbf{r} = t(7\mathbf{i} - 6\mathbf{j} - 5\mathbf{k}),$$

since the line passes through the origin.
Parametric equations for this line are, for example,

\[x = 7t \]
\[y = -6t \]
\[z = -5t \]

and the corresponding symmetric equations are

\[\frac{x}{7} = \frac{y}{-6} = \frac{z}{-5}. \]

Recommended exercises for review

Stewart §10.5: 1, 3, 15, 19, 25, 29, 35

Overview

Yesterday we introduced equations to describe lines and planes in \(\mathbb{R}^3 \):

- \(\mathbf{r} = \mathbf{r}_0 + t\mathbf{v} \)
 - The vector equation for a line describes arbitrary points \(\mathbf{r} \) in terms of a specific point \(\mathbf{r}_0 \) and the direction vector \(\mathbf{v} \).

- \(\mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_0) = 0 \)
 - The vector equation for a plane describes arbitrary points \(\mathbf{r} \) in terms of a specific point \(\mathbf{r}_0 \) and the normal vector \(\mathbf{n} \).

Question

How can we find the distance between a point and a plane in \(\mathbb{R}^3 \)? Between two lines in \(\mathbb{R}^3 \)? Between two planes? Between a plane and a line?

(From Stewart §10.5)
Distances in \(\mathbb{R}^3 \)

The distance between two points is the length of the line segment connecting them. However, there’s more than one line segment from a point \(P \) to a line \(L \), so what do we mean by the distance between them?

The distance between any two subsets \(A, B \) of \(\mathbb{R}^3 \) is the smallest distance between points \(a \) and \(b \), where \(a \) is in \(A \) and \(b \) is in \(B \).

- To determine the distance between a point \(P \) and a line \(L \), we need to find the point \(Q \) on \(L \) which is closest to \(P \), and then measure the length of the line segment \(PQ \). This line segment is orthogonal to \(L \).
- To determine the distance between a point \(P \) and a plane \(S \), we need to find the point \(Q \) on \(S \) which is closest to \(P \), and then measure the length of the line segment \(PQ \). Again, this line segment is orthogonal to \(S \).

In both cases, the key to computing these distances is drawing a picture and using one of the vector product identities.

Distance from a point to a plane

We find a formula for the distance \(s \) from a point \(P_1 = (x_1, y_1, z_1) \) to the plane \(Ax + By + Cz + D = 0 \).

Let \(P_0 = (x_0, y_0, z_0) \) be any point in the given plane and let \(b \) be the vector corresponding to \(P_0P_1 \). Then

\[
b = (x_1 - x_0, y_1 - y_0, z_1 - z_0).
\]

The distance \(s \) from \(P_1 \) to the plane is equal to the absolute value of the scalar projection of \(b \) onto the normal vector \(n = (A, B, C) \).

\[
s = \frac{|A(x_1 - x_0) + B(y_1 - y_0) + C(z_1 - z_0)|}{\sqrt{A^2 + B^2 + C^2}}.
\]

Since \(P_0 \) is on the plane, its coordinates satisfy the equation of the plane and so we have \(Ax_0 + By_0 + Cz_0 + D = 0 \). Thus the formula for \(s \) can be written

\[
s = \frac{|Ax_1 + By_1 + Cz_1 + D|}{\sqrt{A^2 + B^2 + C^2}}.
\]
Example 6
We find the distance from the point $(1, 2, 0)$ to the plane
$3x - 4y - 5z - 2 = 0$.

From the result above, the distance s is given by

$$s = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

where $(x_0, y_0, z_0) = (1, 2, 0)$,

$A = 3, B = -4, C = -5$ and $D = -2$.

This gives

$$s = \frac{|3\cdot 1 + (-4)\cdot 2 + (-5)\cdot 0 - 2|}{\sqrt{3^2 + (-4)^2 + (-5)^2}}$$

$$= \frac{7}{\sqrt{50}} = \frac{7\sqrt{2}}{10}.$$

Distance from a point to a line

Question

Given a point $P_0 = (x_0, y_0, z_0)$ and a line L in \mathbb{R}^3, what is the distance from P_0 to L?

Tools:
- describe L using vectors
- $||u \times v|| = ||u|| ||v|| \sin \theta$

Distance from a point to a line

Let $P_0 = (x_0, y_0, z_0)$ and let L be the line through P_1 and parallel to the nonzero vector v. Let r_0 and r_1 be the position vectors of P_0 and P_1 respectively. P_2 on L is the point closest to P_0 if and only if the vector $\overrightarrow{P_2P_0}$ is perpendicular to L.

The distance from P_0 to L is given by

$$s = ||\overrightarrow{P_2P_0}|| = ||\overrightarrow{P_1P_0}|| \sin \theta = ||r_0 - r_1|| \sin \theta$$

where θ is the angle between $r_0 - r_1$ and v.

Since
\[\|(r_0 - r_1) \times v\| = ||r_0 - r_1|| \|v\| \sin \theta \]
we get the formula
\[s = ||r_0 - r_1|| \sin \theta = \frac{||(r_0 - r_1) \times v\|}{\|v\|} \]

Example 7
Find the distance from the point \((1,1,-1)\) to the line of intersection of the planes
\[x + y + z = 1, \quad 2x - y - 5z = 1. \]

The direction of the line is given by \(v = n_1 \times n_2\) where \(n_1 = i + j + k\), and \(n_2 = 2i - j - 5k\).

\[v = n_1 \times n_2 = -4i + 7j - 3k. \]

In the diagram, \(P_1\) is an arbitrary point on the line. To find such a point, put \(x = 1\) in the first equation. This gives \(y = -z\) which can be used in the second equation to find \(z = 1/4\), and hence \(y = -1/4\).

Here \(\overrightarrow{P_1P_0} = r_0 - r_1 = \frac{5}{2}j - \frac{5}{2}k\). So
\[s = \frac{||(r_0 - r_1) \times v\|}{\|v\|} = \frac{||\left(\frac{5}{2}j - \frac{5}{2}k\right) \times (-4i + 7j - 3k)||}{\sqrt{(-4)^2 + 7^2 + (-3)^2}} = \frac{||5i + 5j + 5k||}{\sqrt{74}} = \sqrt{\frac{75}{74}}. \]
Distance between two lines

Let \(L_1 \) and \(L_2 \) be two lines in \(\mathbb{R}^3 \) such that
- \(L_1 \) passes through the point \(P_1 \) and is parallel to the vector \(v_1 \)
- \(L_2 \) passes through the point \(P_2 \) and is parallel to the vector \(v_2 \).
Let \(r_1 \) and \(r_2 \) be the position vectors of \(P_1 \) and \(P_2 \) respectively.
Then parametric equation for these lines are
\[
L_1 \quad r = r_1 + tv_1 \\
L_2 \quad \tilde{r} = r_2 + sv_2
\]
Note that \(r_2 - r_1 = \overrightarrow{P_1P_2} \).
We want to compute the smallest distance \(d \) (simply called the distance) between the two lines.
If the two lines intersect, then \(d = 0 \). If the two lines do not intersect we can distinguish two cases.

Case 1: \(L_1 \) and \(L_2 \) are parallel and do not intersect.
In this case the distance \(d \) is simply the distance from the point \(P_2 \) to the line \(L_1 \) and is given by
\[
d = \frac{||\overrightarrow{P_1P_2} \times v_1||}{||v_1||} = \frac{||(r_2 - r_1) \times v_1||}{||v_1||}
\]

Case 2: \(L_1 \) and \(L_2 \) are skew lines.
If \(P_3 \) and \(P_4 \) (with position vectors \(r_3 \) and \(r_4 \) respectively) are the points on \(L_1 \) and \(L_2 \) that are closest to one another, then the vector \(\overrightarrow{P_3P_4} \) is perpendicular to both lines (i.e. to both \(v_1 \) and \(v_2 \)) and therefore parallel to \(v_1 \times v_2 \). The distance \(d \) is the length of \(\overrightarrow{P_3P_4} \).
Notice that \(d = ||r_4 - r_3|| \), which we can rewrite as
\[
d = \frac{||(r_4 - r_3) \cdot (v_1 \times v_2)||}{||v_1 \times v_2||}
\]
because \(r_4 - r_3 \) is parallel to \(v_1 \times v_2 \).
What’s the point of doing this? Of course we don’t know what r_4 or r_3 is. Here’s the trick: Notice that

$$r_4 = r_2 + tv_2 \quad r_3 = r_1 + sv_1$$

for some s and t.

Now substitute these into our dimension formula, obtaining

$$d = \frac{|(r_2 - r_1 + tv_2 - sv_1) \cdot (v_1 \times v_2)|}{||v_1 \times v_2||}$$

which simplifies, since $v_1 \times v_2$ is orthogonal to both v_1 and v_1, to

$$d = \frac{|(r_2 - r_1) \cdot (v_1 \times v_2)|}{||v_1 \times v_2||}$$

Thus we don’t need to know r_4 or r_3 explicitly at all! (Exercise — find formulas for them!)

Example 8

Find the distance between the skew lines

$$\begin{align*}
x + 2y &= 3 \\
y + 2z &= 3 \quad \text{and} \quad x + y + z &= 6 \\
x - 2z &= -5
\end{align*}$$

We can take $P_1 = (1, 1, 1)$, a point on the first line, and $P_2 = (1, 2, 3)$ a point on the second line. This gives $r_2 - r_1 = j + 2k$.
Now we need to find v_1 and v_2:

$$v_1 = (i + 2j) \times (j + 2k) = 4i - 2j + k,$$

and

$$v_2 = (i + j + k) \times (i - 2k) = -2i + 3j - k.$$

This gives

$$v_1 \times v_2 = -i + 2j + 8k.$$

The required distance d is the length of the projection of $r_2 - r_1$ in the direction of $v_1 \times v_2$, and is given by

$$d = \frac{|(r_2 - r_1) \cdot (v_1 \times v_2)|}{|v_1 \times v_2|},$$

$$= \frac{|(j + 2k) \cdot (-i + 2j + 8k)|}{\sqrt{(-1)^2 + 2^2 + 8^2}},$$

$$= \frac{18}{\sqrt{69}}.$$