Are the polynomials listed below linearly independent in \mathbb{P}_2?

$1 - 3t, \ 1 + t^2, \ 1 - 3t + t^2$.
Let $B = \{1 + t, 2 - t\}$ and $C = \{1 - t, t\}$ be two bases for \mathbb{P}_1.

1. Express $2t + 2$ in B and C coordinates.

2. Is it easier to express the B basis vectors in C coordinates, or the C basis vectors in B? If you want to find the change of coordinate matrices, why is it useful to answer this question before you begin computing anything?

3. Find the change of coordinate matrices from B to C coordinates and from C basis vectors in B coordinates.
Let $\mathcal{B} = \{b_1, b_2\}$ and $\mathcal{C} = \{c_1, c_2\}$ be bases for \mathbb{R}^2. Find the change-of-coordinates matrices from \mathcal{C} to \mathcal{B} and from \mathcal{B} to \mathcal{C}.

\[
b_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad b_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad c_1 = \begin{bmatrix} 0 \\ 3 \end{bmatrix}, \quad c_2 = \begin{bmatrix} -5 \\ 2 \end{bmatrix}\]