Question 1 (Distance point to line)

Find the distance from a point \(P_0 \) to a line \(L \).

(a) Describe \(L \) using a direction vector \(v \) and a specific point \(P_1 \) on \(L \).

(b) Let \(P_2 \) be the point on \(L \) closest to \(P_0 \).

(c) Let \(r_0 \) be the vector from the origin to \(P_0 \).

(d) Let \(r_1 \) be the vector from the origin to \(P_1 \).

(e) Label the picture.

(f) Use trigonometric identities to describe relationships between as many lengths as you can.

(g) Solve for the distance from \(P_0 \) to \(L \).

Question 2 (Distance point to line)

Find the distance from the point \(P_0 = (1, 1, -1) \) to the line \(L \) of intersection between the planes

\[x + y + z = 1, \quad 2x - y - 5z = 1. \]

(a) Explain why the direction vector of \(L \) is \(v = n_1 \times n_2 \), where \(n_1 = i + j + k \), and \(n_2 = 2i - j - 5k \).

(b) Find \(v \).

(c) Pick \(P_1 = (1, \frac{1}{7}, \frac{1}{7}) \) on the line. How far is \(P_1 \) from the closest point to \(P_0 \) on \(L \)?

(d) What is the distance from \(P_0 \) to each of the two planes?
(e) Find the distance from the point \(P_0 = (1, 1, -1) \) to the line \(L \) of intersection.